Reaction and Control I. Mixing Additive and Multiplicative Network Algebras
نویسنده
چکیده
This paper is included in a series aiming to contribute to the algebraic theory of distributed computation. The key problem in understanding Multi-Agent Systems is to find a theory which integrates the reactive part and the control part of such systems. To this end we use the calculus of flownomials. It is a polynomial-like calculus for representing flowgraphs and their behaviours. An ‘additive’ interpretation of the calculus was intensively developed to study control flowcharts and finite automata. For instance, regular algebra and iteration theories are included in a unified presentation. On the other hand, a ‘multiplicative’ interpretation of the calculus of flownomials was developed to study dataflow networks. The claim of this series of papers is that the mixture of the additive and multiplicative network algebras will contribute to the understanding of distributed computation. The rôle of this first paper is to present a few motivating examples1.
منابع مشابه
Almost n-Multiplicative Maps between Frechet Algebras
For the Fr'{e}chet algebras $(A, (p_k))$ and $(B, (q_k))$ and $n in mathbb{N}$, $ngeq 2$, a linear map $T:A rightarrow B$ is called textit{almost $n$-multiplicative}, with respect to $(p_k)$ and $(q_k)$, if there exists $varepsilongeq 0$ such that$$q_k(Ta_1a_2cdots a_n-Ta_1Ta_2cdots Ta_n)leq varepsilon p_k(a_1) p_k(a_2)cdots p_k(a_n),$$for each $kin mathbb{N}$ and $a_1, a_2, ldots, a_nin A$. Th...
متن کاملApproximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras
Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...
متن کاملAdditive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...
متن کاملAutomatic continuity of almost multiplicative maps between Frechet algebras
For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...
متن کاملCONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS
Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logic Journal of the IGPL
دوره 6 شماره
صفحات -
تاریخ انتشار 1998